Running Maud¶
Maud provides the following commands:
maud sample [PATH TO MAUD INPUT]
maud simulate [PATH TO MAUD INPUT]
maud variational [PATH TO MAUD INPUT]
maud predict [PATH TO MAUD SAMPLE OUTPUT]
The documentation for each of these commands is as follows:
sample¶
Generate MCMC samples given a user input directory.
This function creates a new directory in output_dir with a name starting with “maud_output”. It first copies the directory at data_path into the new this directory at new_dir/user_input, then runs the running_stan.sample function to write samples in new_dir/samples. Finally it prints the results of cmdstanpy’s diagnose and summary methods.
Run the sample function as a click command.
sample [OPTIONS] [DATA_PATH]
Options
- --output_dir <output_dir>¶
Where to save Maud’s output
Arguments
- DATA_PATH¶
Optional argument
simulate¶
Generate draws from the initial values.
simulate [OPTIONS] [DATA_PATH]
Options
- --output_dir <output_dir>¶
Where to save the output
- -n <n>¶
Number of simulations
Arguments
- DATA_PATH¶
Optional argument
variational¶
Generate MCMC samples given a user input directory.
This function creates a new directory in output_dir with a name starting with “maud_output”. It first copies the directory at data_path into the new this directory at new_dir/user_input, then runs the running_stan.sample function to write samples in new_dir/samples. Finally it prints the results of cmdstanpy’s diagnose and summary methods.
variational [OPTIONS] [DATA_PATH]
Options
- --output_dir <output_dir>¶
Where to save Maud’s output
Arguments
- DATA_PATH¶
Optional argument
predict¶
Generate MCMC samples given a Maud output folder at train_path.
This function creates a new directory in output_dir with a name starting with “maud-predict-output”. It first copies the testing directory at train_path into the new this directory at new_dir/user_input, then runs the running_stan.predict_out_of_sample function to write samples in new_dir/oos_samples.
The trained output is stored in the new_dir/trained_samples folder along with the user input required to generate the trained samples.
predict [OPTIONS] DATA_PATH
Arguments
- DATA_PATH¶
Required argument